In this page, you’ll find 75 research references that provide information on how Candida goes from a harmless normal constituent of the gastrointestinal tract to a pathogenic systemic problem that can affect anyone and everyone.

circle-pics-facts

The human digestive tract is said to contain some 100 trillion cells compared to about only 10 trillion human cells in the body. This particular arrangement has led to man being classified as a “super-organism,” whose health is directly related to the function of the thousands of species of micro-organisms that make up the 100 trillion cells in the intestinal tract. For years, research suggested that there were 400-500 species that made up this microbial population. Recent advances in research have now put that number at anywhere from 3,300 to 5,700 or more, (9) to upwards of 30,000 species. The intestinal tract houses what has been called “the densest ecosystem on the planet,” and is approximately 25-28 ft long. The surface area of the intestinal tract measures approximately 200 square meters, roughly the size of a tennis court.
Modern medicine states that systemic Candida exists only in immunocompromised individuals, as a result of AIDS, immunosuppressive therapy, such as in organ transplants, or chemotherapy. Science states otherwise, and extends that list to include: diabetes, premature infants, surgical patients; (7)(10) alcoholism, cirrhosis, tuberculosis, cancer, corticosteroids, marrow hyperplasia; (66) hematological malignancies; (8) hospitalized patients, especially in Intensive Care Units, or having major injuries;(10) burn victims; (54) nutritional deficiencies; (22) as well as aging. (22)(35)(36)(37)
Researchers continuously broaden the scope of those being affected. Valdimarsson et al. state that there are no common immunological denominators. (1) Senet states that the pathogenic behavior of Candida may appear following even a slight modification of the host. (55) Berg et al. on behalf of Biocodex Pharmaceuticals states that Candida spreads in immunocompetent individuals. (68)
The widespread use of antibiotics, which induce neutropenia, an abnormally low number of neutrophils (white blood cells), and immune system suppression is commonly attributed by science to be the most consistent cause of systemic Candida.(3)(9)(12)(13)(14)(16)(17)(18)(19)(20)(21)(22)(55)(56)(57)(64)(67)(68)(69)(76)(77) Corticosteroids suppress immune system function. (11)(17)(68) Intestinal homeostasis is critical for human health. (6)(7)(55)(57)(68)(71)
Candida has been shown to be capable of causing systemic immuno-suppression via its cell wall proteins, (2) TLR2-mediated IL-10 release, (30) protease cleaving of leukocyte integrin CD11/CD18, (25)(31)(34)(62)(63) and intracellular components. (72)
Candida can manipulate inflammatory responses as needed (31)(32) and inflammatory responses can have systemic effects. (44)(45)(46)(47)
Candida has the ability to destroy immune cells, (3)(23)(24)(26)(49) hide from the immune system, (4)(19) adapt to the inner environment of immune cells, (5)(38)(39) resist and suppress ROI and NO production of immune cells, (15)(16)(27)(43) destroy binding sites and receptors of immune cells, (25)(31)(33)(34) manipulate immune responses, (28)(53)(70)(74) and affect immune cell structure. (42)(73)
Stress can cause accumulation of iron at the luminal surface of intestinal cells (75) and iron overload leads to impaired neutrophil function. (14) Stress can lead to immunosuppression facilitating the spread of Candida. (55) Sanchez et al. discuss the affect of starches vs. sugars on the immune system response to Candida. (29)
Macrophages, which are widely distributed immune system cells that play an indispensable role in homeostasis and defense, and are cells that function as a first line of defense against invading microorganisms, are historically ineffective against Candida albicans. (40)(41)
While evidence suggests that intestinal Dendritic Cells are critical for regulation of immunity in the gut, (50) Dendritic Cells are poor in both intracellular killing and damaging of C. albicans hyphae, (48) and only kill as effectively as macrophages. (51) Ingestion of hyphae by Dendritic Cells inhibits Th1 immune responses. (52)
Candida Albicans’ Secreted Aspartyl Proteases (SAPs) are a highly specific family of enzymes that assists in its ability to cause disease in the body. SAPs are believed to play a role in Candida’s ability to induce inflammation, invade and breakdown tissue barriers, digest proteins for nutrients, destroy and evade immune defenses, and spread throughout the body. (25)(33)(34)(58)(59)(60)(61)(62)(63)(65) Research has shown that the destructive effects of protease enzymes are associated with diabetes, hypertension, and immune system suppression. (25)(31)(34)(62)
Additional enzymes secreted by Candida albicans include phospholipases, lipases, glucoamylases, phosphatases, and β-N-acetylglucosaminidase.

Conclusion

As impressive as I find the above research to be, it is just a small representation of the research on Candida albicans and its effects in humans. With over 26,000 studies on Candida albicans since the introduction of antibiotics in the late 1940s, there is much more to be analyzed and reported. What is readily apparent from this data is the fact that systemic fungal Candida infections are a common occurrence in most individuals as a result of antibiotic use and other contributing factors.

Jeff's Signature

Dr. Jeffrey McCombs, DC

*Click here to view references.